## Discriminant, Literal Equations, Rational Expressions, and Graphing Quadratics Test

1. Solve  $y = \frac{5}{8}b + 10$  for b. Show your work clearly.

2. When x pounds of force is applied to one end of a lever that is L feet long, the resulting force y on the other end is determined by the distance between the fulcrum (the lever's pivot) and the end of the lever on which the x pounds of force is exerted.



The formula relating the forces is xd = y(L - d). What formula can you use to find the length of the lever? Sho w your work clearly.

$$L = \frac{xd}{y} + d$$

b. 
$$L = \frac{xd + d}{y}$$

c. 
$$L = \frac{xd - yd}{y}$$

d. 
$$L = \frac{yd}{x} + d$$

3. Calculate and use the discriminant to determine the number of real solutions of the equation.  $4x^2 - 3x - 7 = 0$ . Show your work clearly.

 $3p^{16}$ . D = 9 - 4(4)(-3)

[a real solns]

4. Write two quadratic equations of the form  $ax^2 + bx + c = 0$ , where  $a \ne 0$ , one of which has two real-number solutions and the other having no real solutions. Make sure to identify which is which. Explain why each equation has real solutions or no real solutions.

 $y^2 + 2x^2 - 3 = 0$   $b^2 - 4ac = 4 - 4(1)(3)$  4pts. D = 4 + 12 D = 16 > 0 2 Real Solutionsbecause D > 0  $x^{2} + 2x + 3 = 0$  D = 4 - 4(1)(3) D = -8 D < 0 Po real solutions pecause D < 0

Upts

Simplify the rational expression, if possible. Show your work clearly.

5.  $\frac{n^2 + 8n + 15}{n^2 - 25}$ . Please also state the excluded values.

 $n \neq \pm 5$ 

4pts, (n+5)(n+3)

n-5

Name:

ID: A

 $6. \qquad \underline{x^2 - 4x + 4}$ 

Remember, a fraction bar means ÷. You do not have to state excluded values.

 $\frac{(x^{2}-4x+4)}{15x} = \frac{5}{x^{2}}$   $\frac{(x-2)(x-2)}{3} = \frac{5}{x^{2}}$   $\frac{(x-2)(x-2)}{3} = \frac{5}{x^{2}}$ 



7. Graph using five points. Identify the roots (if they exist), the vertex, and the y-intercept.  $y=x^2-4$ 





## Write in standard form and graph.

8. 
$$y = (x-1)^2 + 2$$

a. 
$$y = -x^2 - 2x + 1$$



b. 
$$y = x^2 - 2x + 3$$



c. 
$$y = x^2 + 2x + 3$$



d. 
$$y = -x^2 + 2x + 1$$



